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1 Introduction

This course will examine algorithms in which the running time is sublinear in the size of the input. In
particular, this means that only part of the input can be read. There are many examples in which this
setting is interesting, mainly when dealing with large data sets. Some specific examples are scientific
databases, the world wide web, data from the Genome Project, and high-resolution images. Another
setting where sublinear-time algorithms are interesting include settings where it takes a long time to
access the data. This could, for example, be due to to a slow connection or to the fact that data is only
available implicitly (such as when we need to run an experiment to get each data point).

We will take a theoretical point of view, and examine general techniques used for solving problems
in sublinear time, consider different models for sublinear-time computation, and see some impossibility
results. In the course of this study, we will encounter sublinear-time algorithms for a variety of objects,
such as graphs, strings, functions, codes, metric spaces and distributions. The analyses of these algo-
rithms make use of tools from probability theory, Fourier analysis, combinatorics and other fields. We
will also briefly consider sublinear-space algorithms: specifically, streaming algorithms.

A natural question to ask is what can an algorithm compute if it reads only a sublinear portion of
the data? Or more generally, if it runs in sublinear time? While for some problems exact deterministic
sublinear-time algorithms exist, for most problems, these algorithms only give “approximate” answers
and must be randomized. We will study the tradeoff between the quality of approximation and the
resources (namely, the number of samples or the running time) available to the algorithm.

1.1 A Deterministic Sublinear-Time Algorithm

We begin with a rare example of a deterministic sublinear-time algorithm. Consider the following
problem:

Given: a metric space on n points, specified by a distance matrix D, where Dij = distance(i, j).

Output: output (k, `) such that d(k, `) ≥ 1
2 maxi,j Dij .

Here is an algorithm for this problem:

Algorithm 1: Diameter of a metric space.
1 Pick k arbitrarily.
2 Select ` to maximize Dk`.
3 Output (k, `).

Clearly, the running time of the algorithm is O(n), which is sublinear, since the input size is Θ(n2).
But how close is the output to optimal value d = maxi,j Dij?

Claim 1. d
2 ≤ z ≤ d.

Proof. The second inequality is trivial. For the first inequality, we use the facts that distances obey the
triangle inequality, and that they are symmetric. Suppose the pair u, v is the pair that achieves the
maximum distance, i.e. Duv = d. Then

d = Duv ≤ Dup +Dpv = Dpu +Dpv ≤ 2z.

Thus, z ≥ d
2 .
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2 Notions of Approximation

There are various notions of approximation. In this course, we focus on two types of approximation: the
classical approximation (more pertinent for search problems) and property testing (defined for decision
problems). As mentioned, the classical approximation deals with problems where one needs to compute
a value (such the average of a list of numbers) or output a structure (such as the minimum spanning
tree of a graph or the furthest pair of points in a metric space). In the former case, the quality of
approximation is judged by how close the output is to the desired value. For the latter, one compares
the cost of the output to the cost of the optimal solution. For example, in Section 1.1, we saw that the
output of Algorithm 1 was between d

2 and d, when the optimal solution was d. It is easy to generalize
this notion of approximation to all optimization problems:

Definition 2. Let π(x) be the optimal output on input x. For γ > 1, an algorithm A is a γ-multiplicative
approximation algorithm if ∀x,

π(x)
γ
≤ A(x) ≤ γ · π(x).

Similarly, for α > 0, we say that A is an α-additive approximation algorithm if ∀x,

π(x)− α ≤ A(x) ≤ π(x) + α.

In decision problems, the outputs are always yes/no or accept/reject, so what does it mean to have an
approximate solution? The intuition for our notion (which is not quite accurate, but hopefully helpful)
will be that the output is correct for the input to the problem, or to some other input which is “close”
to our input.

More formally, suppose we split the set of all possible inputs into YES-instances (on which an exact
algorithm should accept) and NO-instances (on which an exact algorithm should reject). What we will
require is that on a YES-instance, the algorithm will accept with probability at least 2

3 . The NO-instances
will be split into two groups: one group contains all inputs that are “far” from all YES-instances, and
one group that contains inputs that are “close” to some YES-instance. We require that the algorithm
reject inputs of the first kind with probability at least 2

3 , and we do not care how it handles inputs of
the second kind.

Terminology and definitions of property testing. The research area that studies the notion of
approximation for decision problems is called Property Testing. Recall that a language is a class of
objects. In Property Testing, a language is sometimes called a property. However, depending on the
context, a property might also refer to objects of size n in the language P.

Distance. As we saw in the 0?1? example, our notion of approximation for decision problems calls
for a distance function on the inputs δ(x, y) ∈ [0, 1]. The distance function depends on the problem at
hand. Examples of distance functions that have been considered in the literature:

• Relative Hamming distance: the fraction of bits/characters/matix entries on which x and y
differ.

• Relative Edit distance: the minimum number of character substitutions, inserts and deletes
needed to transform x into y divided by the length of x.

We will usually look at the Hamming distance.
A distance from an input x to the property P is defined as the distance between x and the input in

P closest to x:
δ(x,P) = min

y∈P
δ(x, y).

We say an input is ε-far from P if δ(x,P) ≥ ε.
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Input representation. An important issue in defining the distance between inputs is the input rep-
resentation. For example, a graph can be represented by an adjacency matrix or adjacency lists for all
its vertices. The distance, as we defined it, depends on the representation. Also, representation defines
what an algorithm can access in one step. We will usually work with the random access model, where in
a single step the algorithm can access one bit/character/matrix entry or an entry in an adjacency list.

Definition 3 (ε-tester). An algorithm A is an ε-tester for property P if it

1. accepts all x ∈ P with probability at least 2
3 and

2. rejects all x that are ε-far from P with probability at least 2
3 ,

where the probability is taken over the internal coin tosses of A.
The tester has one-sided error if it always accepts functions satisfying P. If the queries made by the

algorithm do not depend on the answers of the queries, A is called a nonadaptive tester. Otherwise, it
is called an adaptive tester.

As always with probabilistic algorithms, the error in the definition of the ε-tester is set arbitrarily to
1
3 . Any constant below 1

2 would be fine. We can reduce the error to any constant ∆ by repeating the
algorithm O(log 1

∆ ) times and taking the majority answer. As an exercise, if you are not familiar with
this fact, try proving it using Chernoff bound.

It is important to analyze both the query complexity and the running time in terms of the input
length, n, and the distance parameter, ε.

3 Toy Examples

Consider the following example.

Input: a string w ∈ {0, 1}n.

Goal: determine if w is an all 0 string, that is, answer the question: Is w = 00 . . . 0?
To get an exact answer all the time, it is necessary to read the entire input. This is because there

may be only 1 bit with value 1, and we must see that bit in order to detect that the string is actually a
NO-instance.

But suppose we only want an approximate answer. Namely, we are interested in distinguishing the all
0 string from strings which have a large fraction of 1’s (‘errors’) say at least an ε fraction of them. More
formally, now what we require from our algorithm is that if w = 00 . . . 0, then it accepts. If number of
1’s in w is at least εn, the our algorithm should reject with probability at least 2

3 . Towards this, consider
Algorithm 2.

Algorithm 2: Zero tester.
1 Sample s = 2

ε positions uniformly and independently at random.
2 If 1 is found, reject; otherwise, accept.

We will now analyze this algorithm. We state and prove the following theorem.

Theorem 4. There is a nonadaptive one-sided error tester for the all-zero property of strings w ∈ {0, 1}n
(that is, for the property of being an all 0 string) that runs in O( 1

ε ) time.
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Proof. The required algorithm is Algorithm 2. First note that if w = 00 . . . 0, it is always accepted. Now
suppose that w has at least εn 1’s. The following calculation shows that the algorithm rejects such w
with probability ≥ 2

3 .

Pr[algorithm rejects] = Pr[a 1 is found in the sample] ≤ (1− ε)s

≤ e−εs Using: 1− x ≤ e−x

= e−2 <
1
3

It is interesting to note that the query complexity (the number of samples chosen) of the algorithm
is O( 1

ε ), which is independent of n! The running time is identical because as the value is sampled one
can check if it is 1 and reject immediately if it is so. Thus, the algorithm runs in time O( 1

ε ).

Question: Don’t you need log n time to write down a location of the bit you want to query?

Answer: It depends on the model. In this class, we will view each query to the input as an operation of
constant cost, even though in a more realistic model this cost would be logarithmic. (In your algorithms
class, you probably also ignored the cost of comparing two numbers of unbounded length when you
analyzed your sorting algorithms.) It should not be hard to convert between the models, since we will
always carefully analyze both query and time complexity.

General observation. A general outline of what happened in the above algorithm is that points were
picked at random, and they were tested as witnesses for a bad event. This leads to the following lemma.

Lemma 5 (Witness Lemma). If a test catches a witness with probability ≥ p then s = 2/p iterations of
the test suffices to catch a witness with probability ≥ 2/3.

Proof.

Pr
[
pick no witness in

2
p

samples
]
< (1− p)

2
p ≤ e−p·

2
p =

1
e2

<
1
3
.

This is a good observation to keep in mind for analyzing probabilistic algorithms.
We now give an example of randomized approximation.

Input: a string w ∈ {0, 1}n.

Goal: estimate the fraction of 1’s in w (like in polls).
Here again we are interested in the approximate version of the problem. Specifically, we would like

an approximation algorithm with additive error ε. Towards this, consider the Algorithm 3:

Algorithm 3: Average estimator.
1 Sample s = 1

ε2 positions uniformly and independently at random.
2 Output average of the sample.

We will now analyze this algorithm. We state and prove the following theorem.

Theorem 6. There is an algorithm which outputs an ε-additive approximation of the fraction of 1’s in
a 0-1 string with probability at least 2

3 and runs in time O( 1
ε2 ).
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In the proof, we make use of the following inequality, called the Hoeffding bound, which is indispens-
able in the analysis of randomized algorithms.

Fact 7 (Hoeffding Bound). Let Y1, . . . , Ys be independently distributed random variables in [0, 1] and let
Y =

∑s
i=1 Yi. Then, Pr[|Y − E[Y ]| ≥ δ] ≤ 2e−2δ2/s.

Proof of Theorem 6: Algorithm 3 is the required algorithm. We bound the probability that the
additive error is greater than ε. For each i ∈ [s], let Yi ∈ {0, 1} be the random variable that denotes the
value of the i’th sample and let Y =

∑
i∈[s] Yi be the sample sum. Using the linearity of expectation,

E[Y ] =
∑
i∈[s]E[Yi] = s×(# of 1’s in w)

n . Therefore, we have,

Pr[|(sample average)− (fraction of 1’s in w)| ≥ ε = Pr[|Y − E[Y ]| ≥ εs]

≤ 2e
−2(εs)2

s Using Hoeffding bound; Fact 7

= 2e−2 <
1
3
.

The last equality follows by substituting s = 1
ε2 .

4 Property Testing Examples

4.1 Testing if an Image is a Half-plane

In this section, we present an example of a property tester for testing properties of images. We use image
representation popular in learning theory. Each image is represented by an n × n matrix M of pixel
values. We focus on black and white images given by binary matrices with black denoted by 1 and white
denoted by 0. To keep the correspondence with the plane, we index the matrix by {0, 1, . . . , n− 1}2 ,
with the lower left corner being (0, 0) and the upper left corner being (0, n− 1).

An image is a half-plane if there is a vector w ∈ R2 and a number a ∈ R such that a pixel x is black
if and only if wTx ≥ a. We now state the problem.

Input: an n× n matrix M consisting of 1’s and 0’s (representing black and white pixel values respec-
tively).

Goal: an ε-tester for testing half-plane with running time O
(

1
ε

)
.

The test. We will use what might be termed as testing by implicit learning paradigm. Namely, we
first try to learn the outline of the image by querying a few pixels. Then, we test if the image conforms
to the outline by random sampling, and reject if something is wrong. Specifically, the algorithm first
finds a small region within which the dividing line falls. Then it checks if pixels on one side of the region
are white and on the other side are black. Call pixels (0, 0), (0, n− 1), (n− 1, 0), (n− 1, n− 1) corners.
Call the first and the last row and the first and the last column of the matrix sides. For a pair of pixels
p1, p2 , let (p1, p2) denote the line through (p1, p2). Let R1(p1, p2) and R2(p1, p2) denote the regions into
which (p1, p2) partitions the image pixels not on the line.

Theorem 8 (Half-plane tester). There is a nonadaptive one-sided error tester for the Half-plane property
of images (that is, for the property of being a half-plane) that runs in O( 1

ε ) time.
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Algorithm 4: Half-plane tester [Ras03].

1 Query the four corners. Let s be the number of sides with differently colored corners.
2 If s = 0 (all corners are of the same color c), query ln 3

ε pixels independently at random. Accept if
all of them have color c. Reject otherwise.

3 If s = 2,

1. For both sides with differently colored corners, do binary search of pixels on the side to find two
differently colored pixels within distance less than εn/2. For one side, call the white pixel w1 and
the black pixel b1 . Similarly, define w2 and b2 for the second side.

2. Let Wi = Ri(w1, w2) and Bi = Ri(b1, b2) for i = 1, 2. W.l.o.g., suppose W2 and B1 intersect while
W1 and B2 do not. Query 2 ln 3

ε pixels from W1 ∪B2 independently at random. Accept if all
pixels from W1 are white, all pixels from B2 are black. Otherwise, reject.

4 If s is not 0 or 2, reject.

Proof. Algorithm 4 is the required algorithm. The algorithm queries at most 2 ln 3
ε +O(log( 1

ε )) pixels. To
prove correctness, we need to show that all half-planes are always accepted, and all images that are ε-far
from being half-planes are rejected with probability at least 2/3. Observe that the number of sides with
different corners is 0, 2, or 4. This is because the cycle ((0, 0), (n− 1, 0), (n− 1, n− 1), (0, n− 1), (0, 0))
visits a vertex of a different color every time it moves along such a side. We analyze each of these cases
separately.

• Case (a) [4 differently colored sides]: In this case, the image cannot be a half-plane.

• Case (b) [0 differently colored sides]: In this case, the image is a half-plane if and only if it is
unicolored. Therefore, we proceed as in the toy example (Section ??) to test if all pixels have the
same color. If it is unicolored, the test always accepts since it never finds pixels of different colors.
If the image is ε-far from being a half-plane, it has at least εn2 pixels of a wrong color. Since tester
samples ln 3

ε pixels uniformly and independently, the tester rejects with probability at least 2/3.

• Case (c) [2 differently colored sides]: The test always accepts all half-planes because it rejects
only if it finds two white pixels and two black pixels such that the line through the white pixels
intersects the line through the black pixels. It remains to show that if an image is ε-far from being
a half-plane, it is rejected with probability ≥ 2/3. We prove the contrapositive, namely, that if
an image is rejected with probability < 2/3, modifying an ε fraction of pixels can change it into a
half-plane. Suppose that an image is accepted with probability ≥ 1/3 = e− ln 3 > (1− ε

2 )
2 ln 3
ε .

That means that < ε/2 fraction of pixels from which we sample in step 3.2 differ from the color of
their region (white for W1 and black for B2 ). Note also that there are at most εn2/2 pixels outside
of W1 ∪ B2 . Changing the color of all black pixels in W1 and all white pixels B2 (see Figure 1)
and making all pixels outside of those regions white, creates a half-plane by changing < ε fraction
of the pixels, as required.

Other properties of images that has been considered in “pixel” model include convexity and con-
nectedness by [Ras03] and partitioning by [KKNBZ11]. Another model for sparse images has also been
considered in the setting of property testing by [TR10].
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Figure 1: Half-plane test
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